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ABSTRACT
Expectation Maximization (EM) algorithm has experienced a significant increase in terms of usage 
in many fields of study.  In this paper, the performance of the said algorithm in finding the Maximum 
Likelihood for the Gaussian Mixed Models (GMM), a probabilistic model normally used in fraud 
detection and recognizing a person’s voice in speech recognition field, is shown and discussed.  At 
the end of the paper, some suggestions for future research works will also be given. 

Keywords: Expectation Maximization (EM), Gaussian Mixed Models (GMM), Box and Muller 
Transformation

INTRODUCTION
Every year, telecommunication companies register heavy loses due to fraud activities amounting 
to million of dollars.  Vendors, seeing the above as an opportunity not to be missed, compete to 
provide data mining applications which could detect the said activity effectively using methods such 
as OLAP, deviation based outlier detection, Hidden Markov Model, and the model which became 
the focal area of this paper, the Gaussian Mixed Models (GMM). 
 GMM is best known in providing a robust speaker representation for the difficult task of 
speaker identification on short-time speech spectra, which is a cosine, transformed of log energy 
filter outputs from processed magnitude spectrum from a 20 ms short time segment of speech, by 
simulated me-scale filter-bank (Reynolds et al., 1995).  Its function is further extended to detect 
fraud activities on daily number of calls and length of calls occurring during the office hours, the 
evening hours and the night hours for both national and international calls (Mohd Yusoff et al., 
2006; Tanigushi et al., 1998).
 Maximum likelihood estimation for GMM is difficult to find and the solution is Expectation 
Maximization (EM) algorithm. The EM algorithm was first introduced by Dempster et al. (1977) 
and since then, there has been a significant increase in terms of its usage, particularly in finding the 
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Maximum Likelihood for probabilistic models (such as missing data, grouping, censoring, truncation, 
and finite mixtures).  The main issue with respect to the EM algorithm is finding the right choice 
of initial parameters and the number of components.  This particular issue or problem is illustrated 
in several examples in this paper. 
 The subsequent sections provide a brief introduction of the EM algorithm and GMM, generate 
the simulation univariate and multivariate data with clear and hidden components, present the results 
gathered from the GMM and EM algorithm where the emphasis given on the choice of the initial 
parameters and the number of components, and some suggestions for future research works.

The Gaussian Mixed Models (GMM) and Expectation Maximization (EM) Algorithm
Let x ∈ Rd and K be the number of components where each component having its own prior 
probability (weight) a and probability density function with the mean  μ and covariance Σ.  All of 
them are mixed resulting in the following formula, which is also known as the Gaussian Mixed 
Models (GMM): 
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 For the case of voice recognition, assuming there are n number of speakers.  The m number 
of samples were collected from each speaker.  Equation (1) is derived for each sample, where its 
parameters were kept in the database for comparison purposes.  Fraud detection would follow 
similar steps.
 From equation (1), the likelihood function and log likelihood function by   ( | ) ( | )L fX x
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likelihood estimation (m.l.e) aimed at finding θ̂ which maximized l(x|θ), with respect to θ (Mardia 
et al., 1979). The expression  log ( | , )a x
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solve, and in order to overcome this problem, the Expectation Maximization (EM) algorithm was 
used. 
 In the EM algorithm, the distribution of X needs to be estimated in the sample space χ, but 
X can only be observed indirectly through Y in the sample space Y.  In many cases, there is a 
mapping x → y(x) from χ o Y, and x is only known to lie in a subset of χ, denoted by χ (y), which is 
determined by equation y = y(x).  The distribution of X is parameterized by a family of distributions 
f(x|θ), with parameters θ ∈ Ω or x.  The distribution of Y, g(y|θ) is therefore:
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 The EM algorithm aims at finding θ which maximizes g(y|θ) given an observed y.  Let the 
function

  Q(θ’|θ) = E(log f(x|θ’)|y,θ)                                  (3)
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be the expected value of log f(x| θ’) given y and θ.  The expectation was assumed to exist for all 
the pairs (θ’,θ).  In particular, it was assumed that f(x|θ) > 0 for θ ∈ Ω. 

EM Iteration
E-Step: Compute Q(θ| θ(p))
M-step: Choose θ(p+1) to be a value of θ ∈ Ω that maximizes Q(θ|θ(p)) (Dempster et al., 1977).  In the 
case of GMM, it was defined that Q(θ’| θ) =  log | , ,E a x X' ' '

y i y y
i

n

1
i i iz in R

=

_ i< F% , where y
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∈{1,2,…, K}, 

y
i
=k if the ith sample was generated by the kth mixture component.  It was simplified using (among 

other) the Bayes formula which is f(θ|x) ∝ f(x|θ)P(θ), where f(θ|x) = posterior probability, f(x|θ) 
= likelihood function, and P(θ) = prior probability (Tsay, 2005; Bilmes, 1997) to the following 
equations:
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The EM Iteration (for GMM)

E-Step:

Equation (5) is calculated. 

M-Step:

The following formulas (derived from the Lagrange multipliers, Q
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respectively) are calculated.  Further details are given in Appendix A.2.

    
  a n p1

j ij

i
= /  (7)

   
 

p

p x
j

ij
i

ij i

in = /
/

  
    (8)
   



Mohd. Izhan Mohd. Yusoff, Mohd. Rizam Abu Bakar and Abu Hassan Shaari Mohd Nor

234 Pertanika J. Sci. & Technol. Vol. 17 (2) 2009

   
 

p

p

x x

j
ij

ij i j i j
t

i

i
n n

R =

- -^ ^h h

/
/

 (9)

 The above steps (i.e. E-step and M-step) were repeated until a convergence was achieved. 

SIMULATION DATA
A program called “Simulate” was developed (using C++ language) to generate simulation data 
for equation (1) with the parameters as per given in Table 1 (taken from Everitt et al., 1981, with 
modifications) using Box and Muller Transformation (Box et al., 1958) and Equation (10).  The 
simulation data were then labelled as “Sample1”, “Sample2”, “Sample3” and “Sample4”, and their 
histograms are shown in Figs. 1 and 2. 
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 The “Simulate” program would generate one random number, denoted by U
1
, from the uniform 

distribution U(0,1), and check whether it was less than say a
i
 (i=1,2).  If the answer is “yes”, the 

two random numbers, denoted by U
2
 and U

3
, are generated from the uniform distribution U(0,1) 

and used in the computing equation (10), along with the corresponding μ
i
 and σ

ii
 , taken from Table 

1.  In this study, these steps were repeated until 1000 observations were obtained.  For “Sample 
4”, apart from equation (10), the formulas given in Appendix A.1 (in the matrix format) were also 
used. 
 In Fig. 1.1, two humps are observed and these represent two components: (μ

1
,σ

11
) = (0.0,1.0) 

and (μ
2
,σ

22
) = (2.0,0.25).  Both of them are well-separated, in which the observations for the latter 

component are grouped around the mean. 
 One would never expect to find the two components in Fig. 1.2.  The histogram is dominated 
by the component (μ

1
,σ

11
) = (0.0,1.0) due to the fact that a

1 
= 0.85. 

 In Fig. 1.3, two humps are vividly displayed and they represent two components: (μ
2
,σ

22
) = 

(-1.0,0.25) and (μ
3
,σ

33
) = (4.0,4.0).  The third component, (μ

1
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) = (0.0,1.0), is hidden from the 

view by the two components indicated earlier.  The observations are grouped around the mean for 
the component (μ

2
,σ
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) = (-1.0,0.25).

 The histograms in Figs. 2.1 and 2.2 appear to split into two representing components (μ
11 

, μ
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) = 

(5.01, 5.91) and (μ
22 

, μ
32
)=(2.78, 2.95), respectively; whereas Figs. 2.3 and 2.4 into three representing 

components (μ
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, μ
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) = (1.46, 4.2, 5.48) and (μ
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, μ
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) = (0.25, 1.3, 1.98), respectively.
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TABLE 1 
a’s, μ’s, n ’s, v ’s and R ’s for each sample used in the “Simulate” program.  

The number of observations generated by the program is given in the bracket 

“Sample1”
(N=1000)

a
1
=0.4

a
2
=0.6

μ
1
=0.0

μ
2
=2.0

σ
11
=1.0

σ
22
=0.25

“Sample2”
(N=1000)

a
1
=0.85

a
2
=0.15

μ
1
=0.0

μ
2
=2.0

σ
11
=1.0

σ
22
=0.25

“Sample3”
(N=1000)

a
1
=0.33

a
2
=0.33

a
3
=0.34

μ
1
=0.0

μ
2
=-1.0

μ
3
=4.0

σ
11
=1.0

σ
22
=0.25

σ
33
=4.0

“Sample4”
(N=1000)

a
1
=0.33

a
2
=0.30

a
3
=0.37
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  (1.1) (1.2)

(1.3)

Fig. 1: The histograms of “Sample1” (with overall mean and standard deviation equal to 1.28 and 1.19, 
respectively); “Sample2” (with overall mean and standard deviation equal to 0.34 and 1.19, respectively); 

and “Sample3” (with overall mean and standard deviation equal to 1.18 and 2.62, respectively)
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  (2.1) (2.2)

  (2.3) (2.4)

Fig. 2:  The histograms of “Sample4” x
1
 (with overall mean and standard deviation equal to 5.88 and 0.81, 

respectively); x
2
 (with overall mean and standard deviation equal to 3.05 and 0.44, respectively); x

3
 

(with overall mean and standard deviation equal to 3.79 and 1.75, respectively); and x
4
 

(with overall mean and standard deviation equal to 1.2 and 0.82, respectively)

RESULTS
A program known as the “GMM” was developed using the Java language to find the parameters of 
equation (1) by employing the EM algorithm, where iteration is stopped when |θp+1-θp|<0.000001.  
Other methods involved in the calculation of EM algorithm include the Cholesky method (Mardia 
et al., 1979).  In this section, two scenarios are therefore presented.

Scenario 1: In Table 2, with the exception of “Sample4” (where initial parameters were taken 
from Everitt et al., 1981), the initial parameters for “Sample1”, “Sample2” and “Sample3” were 
determined using visual inspection of the histograms given in Fig. 1.  This was done by concentrating 
on the observation(s) that gave the highest frequency, as shown by the components which were 
clearly displayed. 
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TABLE 2 
a’s, μ’s, n ’s, σ’s and  ’R ’s for each sample used in the GMM program, 

where they were treated as the initial parameters

“Sample1” a
1
=0.5

a
2
=0.5

μ
1
=0.0

μ
2
=2.0

σ
11
=1.0

σ
22
=1.0

“Sample2” a
1
=0.5

a
2
=0.5

μ
1
=0.0

μ
2
=1.5

σ
11
=1.0

σ
22
=1.0

“Sample3” a
1
=0.33

a
2
=0.33

a
3
=0.34

μ
1
=0.0

μ
2
=-1.0

μ
3
=4.0

σ
11
=1.0

σ
22
=1.0

σ
33
=1.0
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1
=0.33 1 0
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 The values given in Table 2 were used by the “GMM” program as the initial parameters to 
find the final ones for the simulation data, as shown in Figs. 1 and 2.  The results are as tabulated 
below. 
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TABLE 3
 â ’s, û’s, û’s, σ̂ ’s and Σ̂ ’s for each sample produced by the “GMM” program, using (Table 2) 

as the initial parameters.  The “GMM” program converged is given in the bracket

 It is crucial to note that for the univariate samples, the convergence was achieved with more 
than 100 iterations, while for the multivariate samples, less than 100 iterations were required.  The 
choice of the initial parameters might play an important role in making the convergence process 
faster, as illustrated by the latter.
 The “GMM” program managed to find (final) parameters even in cases where the components 
were hidden from the view, but this is provided that the number of components and the observations 
which give the highest frequency for the identifiable components are known.

Scenario 2: Great care should be taken when choosing the initial parameters (to start the EM 
algorithm) as well as the number of components, where wrong choice will lead to the situation 
exemplified in Table 4.  Other examples can be found in Everitt et al. (1981) and Reynolds et al. 
(1995). 
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TABLE 4 
The initial (1st row) and final (2nd row) parameters for “Sample 3” (chosen for having hidden components), 

where: two components were used for (4.1), four components were used for (4.2), and six components were 
used for (4.3) and (4.4).  The actual number of the components is three

(4.3)

(4.3)

(4.1)

(4.2)
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 Notice that Table 4.2’s  nt
3 
= nt

4
 = -0.1 and  vt

33
 =vt

44
 = 0.89 and if  at

3
+ at

4
  were computed, 0.28 

would therefore be obtained, and this is no far different from the ones given in Table 3.  Table 4.3 
also shows similar results, where  û

3 
= … = μ̂6 = -0.1, = vt

33 
= … = vt

66
 = 0.89 and  at

3 
= …= at

6 
= 

0.07 where at
3 
+…+ at

6 
= 0.28.  Despite converging at iteration no. 2 (the lowest so far), the final 

parameters shown in Table 4.4 are completely different from those in Table 3, and this is a direct 
consequence from ignoring the characteristics shown by the observations in the histograms. 

CONCLUSIONS
In the previous sections, “Sample1”, “Sample2”, “Sample3”, and “Sample4” (using a program called 
“Simulate”) were generated with known number of both components and parameters.  Using the 
same information, particularly on the number of components and determining the initial parameters 
to start the EM algorithm by inspecting the histograms, the final parameters produced from the EM 
algorithm (using the program known as the “GMM”) are similar to the real ones.
 Just to show how important the process of choosing the initial parameters is (to start the EM 
algorithm) and the number of components, “Sample3” was selected for having hidden components, 
while the process of determining the initial parameters to start EM algorithm (i.e. by inspecting 
the histograms) and reducing the number of components was repeated; the final parameters 
produced were incorrect.  The same results were also obtained when the number of components 
was increased; for the initial parameters to start the EM algorithm, let the mean equals to 0 and the 
standard deviation equals to 1 (a common mistake done by most of the practitioners).
 In contrary to the above, when the number of components was increased and the initial 
parameters to start the EM algorithm was determined by inspecting the histograms and for the 
rest (especially the hidden components) by letting the mean equals to 0 and standard deviation 
equals to 1, the final parameters produced (with minor adjustments) were similar to the real ones 
(a “characteristic” where some might consider it as unimportant and therefore choose to ignore).
 The determination of the initial parameters to start the EM algorithm could be made easier and 
faster using the graphical techniques such as plotting log

i

i 1

z

z + against x
i
 where each approximately 

straight line, with negative slope represents an area where one component dominates and the kernel 

(4.4)
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method defined by ( ) exp exp expf t m
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(Everitt et al., 1981; Bhattacharya, 1967; Silverman, 1986).  Nevertheless, the main disadvantage 
of both methods is that they can not be used to detect hidden components.

Appendix A

A.1 “Simulate” program uses the following formulas to produce “Sample4” (where the subscript 
represents the dimension of the matrix).

 X
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, ith component of Z, is as per defined in equation 

(10), where μ and σ are set/fixed at 0 and 1, respectively.

A.2  Derivation of Equations (7), (8) and (9)

A.2.1 Using Lagrange multipliers defined by max/min F(x,y,z) subject to Φ(x,y,z)=0, 

G(x,y,z)=F(x,y,z)+ λΦ(x,y,z),  , ,x
G

y
G

z
G0 0 0

2
2

2
2

2
2

= = =  (Spiegel, 1974) on max log( )p aij j
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//
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j
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x Ay
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A.2.3 The first and second expressions of 
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i i i
t=/ / to get equation 

(9).   (Mardia et al., 1979).
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